Johannes Schröder-Schetelig


Research Interests

  • Camera calibration
  • 3D Surface Reconstruction
  • Panoramic Optical Mapping
  • 4D Ultrasound
  • Surface Deformation Tracking
  • Multi-ECG

Curriculum Vitae

since 2020Postdoc at Research Group Biomedical Physics
2020PhD in Physics (Dr. rer. nat.), University of Göttingen
2012Diploma in Physics, University of Göttingen


  • Jan Christoph, Johannes Schröder-Schetelig, Ulrich Parlitz, Stefan Luther.
    Electromechanic Imaging of the Heart.
    In: Zipes and Jalife’s Cardiac Electrophysiology: From Cell to Bedside 8th Edition, Chapter 37 (2021)

  • Johannes Schröder-Schetelig.
    Multimodal high-resolution mapping of contracting intact Langendorff-perfused hearts.
    Doctoral Thesis, eDiss SUB, Georg-August-Universität Göttingen (2021), DOI 10.53846/goediss-8250

  • Jan Christoph, M. Chebbok, Claudia Richter, Johannes Schröder-Schetelig, P. Bittihn, Sebastian Stein, I. Uzelac, F. H. Fenton, G. Hasenfuß, R. F. Gilmour, S. Luther.
    Electromechanical vortex filaments during cardiac fibrillation.
    Nature 555: 667–672 (2018).

  • Jan Christoph, Johannes Schröder-Schetelig, Stefan Luther.
    Electromechanical optical mapping.
    Progress in Biophysics and Molecular Biology 130: 150–169 (2017).

  • I. Uzelac, Y. C. Ji, Daniel Hornung, Johannes Schröder-Schetelig, Stefan Luther, R. A. Gray, E. M. Cherry, F. H. Fenton.
    Simultaneous quantification of spatially siscordant alternans in voltage and intracellular calcium in Langendorff-perfused rabbit hearts and inconsistencies with models of cardiac action potentials and Ca transients.
    Frontiers in Physiology 8: 819 (2017).

  • Miroslav Dura, Johannes Schroeder-Schetelig, Stefan Luther, Stephan E. Lehnart.
    Toward panoramic in situ mapping of action potential propagation in transgenic hearts to investigate initiation and therapeutic control of arrhythmias.
    Frontiers in Physiology 5: 1–7 (2014).

  • Johannes Schröder-Schetelig, Poramate Manoonpong, Florentin Wörgötter.
    Using efference copy and a forward internal model for adaptive biped walking.
    Autonomous Robots 29: 357–366 (2010).